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ABSTRACT

The results of extensive computations are presented in order to accurately

characterize transitions to chaos for the Kuramoto-Sivashinsky equation. In particular

we follow the oscillatory dynamics in a window that supports a complete sequence of

period doubling bifurcations preceding chaos. As many as thirteen period doublings

are followed and used to compute the Feigenbaum number for the cascade and so

enable, for the first time, an accurate numerical evaluation of the theory of universal

behavior of nonlinear systems, for an infinite dimensional dynamical system. Further

more, the dynamics at the threshold of chaos exhibit a fractal behavior which is

demonstrated and used to compute a universal scaling factor that enables the self-

similar continuation of the solution into a chaotic regime.
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Langley Research Center, Hampton, VA 23665. Additional support for the first author was
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1. Introduction.

A central question in fluid dynamics that is attracting a considerable research effort, is the predic-

tion of onset to turbulence. A general theory encompassing the Navier-Stokes equations of fluid

motion, and consequently covering a large class of physical phenomena, is not available at present. As

a result most contributions are focused on the analysis of model equations derived from the Navier-

Stokes system by asymptotic methods, for example, or by finite-dimensional truncations [1]. In many

cases this is a valid and useful approach, especially in the light of Feigenbaum's fascinating theory ori-

ginally for one-dimensional nonlinear maps ([2]-[4]), which predicts universal nonlinear behavior and

is believed to be applicable to many more complex nonlinear systems such as ordinary and partial

differential equations. A brief review of Feigenbaum's theory for the quadratic map is in order here,

but the interested reader should refer to the above mentioned articles (also [5]). The theory pertains to

a large class of mappings of an interval onto itself, a representative member of which has

f(x)=4vx(1-x) , v>0 , x e [0,1] (1)

The flow map is represented by the repeated application of (1). This choice of (1) ensures that x 1 = 0

and x 2 = 1-1/4v are always fixed points (i.e. solutions ofx = f(x)) and that for any 0 < v < 1 all

iterates are contained in [0,1]. Now for 0 < v < 1/4 the fixed point x 1 alone is in the range of the

map, while for 1/4 < v < 1 both fixed points x I and x 2 are in the range. Stability of a fixed point is

determined by the condition If'(x)l < 1, which tells us that for 0 < v < 1/4 the fixed point x 1 is

stable, whereas for 1/4 < v < 3/4, x 1 is unstable and x 2 is stable (these results are easily obtainable

by differentiation of (1)). Further more, at v = 3/4 we have f '(x2) = -1 ( i.e. x 2 is a non-hyperbolic

point.) and so x 2 becomes unstable also for v > 3/4. To summarize, therefore, when 0 < V < 3/4

repeated application of (1) starting from some initial position will yield convergence to one of the two

fixed points and the flow is both deterministic and attractive to a global fixed point. Things become

interesting when v is increased and lies in the range 3/4 < v < 1. For example, at values of v just

above 3/4 a cycle which contains two alternating fixed points is obtained. In other words, repeated

application of (1) gives a sequence Xll, x22, x12, X2l, • • •. Thus, a period doubling takes place

and it is easy to find the values of XÂ2 and x22 since they must be fixed points of the function

f (f (x)), also written as f 2(x). Further increase of V makes these points unstable and a further split

into a cycle containing 4 points heralds the second period doubling. Again the elements of this 4-cycle

are computable by identification of the fixed points of f4(x). This process persists with period
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doublings ad infinitum towards an accumulation point beyond which chaos sets in. More pre-

cisely, if we define v n to be the value of the parameter where the n th period doubling takes place, then

the theory predicts that

Vn+ 1 -- V n
_n = , lim _5n = _ = 4.6692016... (2)

Vn+ 2 --Vn+ 1 n _,_

The Feigenbaum number, 5, is universal for a variety of maps which have locally quadratic maxima.

There is another important universal constant which arises from the theory of nonlinear maps. Without

loss of generality, if we restrict our attention to the vicinity of the turning point x = 1/2 and follow a

sequence of period doublings then it is found that the distance between neighboring elements of period

doubled orbits (in the high-iteration limit) is reduced by a universal constant factor

o_ = 2.502907875... (3)

For a comprehensive review of nonlinear maps see [6]. This property can be used as a predictive tool

to construct the behavior of higher-iterates and even chaotic motions beyond the accumulation point of

the cascade (see [7], for an application in Rayleigh-Benard flow). In what follows we provide con-

clusive evidence that the universal behavior described above, also appears in the infinite-dimensional

dynamical system provided by the Kuramoto-Sivashinsky equation, and both universal constants are

computed with desirable accuracy. In achieving this, we obtain as many as 13 period doublings (the

period increases from a value of for the first time as far as we know, conclusive evidence for a period

doubling (classical) route to chaos for an infinite dimensional dynamical system.

The equation studied is the Kuramoto-Sivashinsky equation (KS), suitably written in the form

U t + UU x + Uxx +VUxxxx =0 ,

(x,t) _ RlxR + , (4)

u(x,O) = Uo(X) , u(x+2_,t) = u(x,t) ,

where V > 0 is the viscosity of the system. This equation arises in a variety of problems such as con: 7
r\ -5.

centration waves [8], flame propagation [9], free surface flows [10]. A generalized form, withi(3) as a

special case, has been derived by an asymptotic analysis of the Navier-Stokes in the context of two-

phase flows in cylindrical geometries with applications in lubricated pipe-lining (for the efficient tran-

sport of crude oil) and oil recovery through porous media [11]. Much analytical and computational

work has been completed in order to elucidate some of the highly complex and nonlinear behavior that

i
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(4) is capable of producing. For many references see [12] and [13]. The former article concentrated

on a fairly global characterization of solutions as v varies, and in particular when it achieves fairly

small values. Note that within the context of linear theory (for the periodic problem posed above), the

number of unstable modes is equal to [v -1/2] ; as v decreases, therefore, more unstable modes enter

and our concern is with the long-time behavior of these under the action of nonlinearity.

2. Numerical solutions.

The results presented here, were obtained by numerical solution of the initial value problem (4)

with the initial condition

Uo(X ) =-sin(x) ,

for all values of v. Inspection of (3) indicates that if the solution is an odd function of x initially, then

it will remain so for all subsequent times. The advantage of such a choice is two-fold; first, the solu-

tion can be expanded as a Fourier sine-series and a spectral Galerkin approximation is readily applica-

ble - secondly, existing analytical results are available that give global bounds for u (x ,t) (and higher

derivatives) only in the odd-parity case [14], whereas analysis of the general case yields an estimate

that the solution can grow at most exponentially [15]. The numerical scheme is described elsewhere as

well as dynamics over a wide range of parameter values [12]. The truncation order of the Galerkin

approximation depends on the value of V, but a crude estimate that has proven practical, is the reten-

tion of a few frequencies more than the number of linearly unstable ones. This number is related to the

dimension of the attractor for given v but no conclusive remarks can be made at this point (note that

the theoretical upper bound estimate for the Hausdorff dimension of the attractor yields a value propor-

tional to V-21/4° which is larger than v -i/2 by a factor of v -1/4°, for details see [16] ; the multiplicative

constant that comes with the bound, however, can be very large thus obstructing direct practical appli-

cations). A brief summary of the phase-space is now given, and documented in Table 1. The descrip-

tion we give starts at v=l and continues to ever-decreasing values. An initial bifurcation occurs when

v decreases below 1 giving unimodal fixed points, and as v decreases further a series of Hopf bifurca-

tions are encountered at v=1/4,1/9,1/16 .... which are seen as dimodal, trimodal, tetramodal etc. sta-

tionary solutions. Not all orbits are stable, however, and so are not necessarily realized. What is more

important is that instability appears that gives the solutions an oscillatory nature. A time-periodic

attractor is obtained for the first time at a value of v - 0.06; a period-doubling occurs in this window

also, but as v is decreased further the solutions are attracted to fully modal fixed points. A new time-
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periodic window with two period-doublingsand a period-halving(in this order), is then found

v _ [.03729,03962] to separate the fully modal fixed points with another laminar window supporting

tetramodal fixed points. The next periodic window v _ [.029969104,034625896] has the added

feature that it contains a complete sequence of period-doubling bifurcations which lead to chaos. We

call this the third periodic window and describe and analyze data from it presently. Note that the first

chaotic window as well as the periodic one that preceded it, are only the first in a series as v is

decreased. In fact at much smaller values of v we found more periodic windows with a complete

sequence of period-doubling bifurcations leading to a chaotic flow. The lengths, in parameter space, of

such successive attractors shrink significantly, but nonetheless we were able to compute the Feigen-

baum number for three successive time-periodic attractors that lead to chaos. In what follows we

describe the first periodic attractor that contains such a sequence, in order to make an accurate com-

parison with Feigenbaum's theory as applied to a partial differential equation.

Computation of the Feigenbaum number.

Table 2 presents our evidence that supports Feigenbaum's universal theory for the Kuramoto-

Sivashinsky equation. These results were generated by monitoring the time evolution of the energy,

E(t), of the solution (the L2-norm) but any other positive definite quantity can be chosen also, for

example the supremum of the solution. Each entry in Table 1 represents the beginning of successive

sub-windows which support solutions that undergo period doublings. The sharp estimation of these

boundaries is necessary if an accurate computation of the Feigenbaum number is desired. In all results

provided here the boundaries were estimated with enough accuracy to yield the Feigenbaum number

correct to the number of significant figures shown. The first column gives the value of v where the

window begins, the second column gives the period of the oscillation and the third column gives the

ratio of successive sub-window lengths according to equation (2). A more visual form of these results

can be seen from a sequence of energy phase planes which cover the first 5 period doublings. It is

clear from the figures that the overall bounds of the solution, for example the maximum and minimum

of E and/_, do not vary much beyond the second period doubling. Chaos sets in by the appearance of

more turns in the phase plane, in other words by an index change of the curves (in fact the exact way

in which the phase plane gains more turns before the appearance of chaos, is quantified in the next

sub-section). Another qualitative aspect of the period doublings as seen through phase-plane

sequences, is the index doubling of the curves at the beginning of successive sub-windows (the end of



-5-

super-stable limit cycles) by the splitting of one branch into two; the two branches then drift apart very

slowly as time evolves until a new sub-window is encountered and another index doubling takes place.

The time period itself increases very slightly over the duration of a sub-window but period doublings

are exact and spontaneous.

The universal limit of multiple period doublings.

Next we present a set of numerical results that exhibit very clearly the fractal nature of the period

doubling bifurcations. The experiment we choose has a value of V = .0299691035 and lies at the end

of the third periodic window. The time period of the solution is 1798.2564595 units and is the result

of a sequence of 12 period doublings (in Figure 1 we show only the first 5). Note that at a value of v

=.029969103484, i.e. a decrease of 1.6x10 -11 chaotic solutions were observed. Consider, then, the

energy phase plane at v = .0299691035. This is not shown here but is similar to the last frame of

Figure 1, except that it has more turns. We now look at that region of the phase plane which has

I/_ (t)l < 0.01 and whose horizontal axis is chosen so as to include initially all the minima of the

energy time series (in other words all the branches on the left of the figure). This diagram is shown in

Figure 2(a). Figure 2(b) is now obtained as follows : The minima on the right half of 2(a) are con-

sidered and the picture is enlarged and centered in exactly the same way that 2(a) was (this ensures

that the position of the leftmost and rightmost branches relative to a given enlarged picture are

congmen0. We now take the left half of 2(b) and enlarge it as indicated above to produce 2(c). The

right half of 2(c) is then enlarged to produce 2(d) and so on. The reason for alternating between right

and left halves is that we obtain the correct regions that need to be enlarged in order to demonstrate

self-similarity of two symmetrically placed regions of the phase plane. This process provides a picture

of the dynamics in a continuously shrinking region of the phase plane and is the appropriate procedure

to follow in searching for any kind of self-similarity or fractal properties of the flow. The pictures

presented here involve scrutinization of the "central" part of the phase plane (in fact keeping track of

the sequence of magnifications we see that the portion of 2(a) which is magnified all the way to the

end, is in the vicinity of E = 17). Other parts of the curve could have been chosen also but the

present choice provided the simplest algorithm. With the above construction we are in a position to

exhibit the fractal nature of the dynamics. The pictures 2(c), 2(e), 2(g) and 2(i) are seen to be self-

similar as also are 2(b), 2(d), 2(13, 2(h) and 20). Self-similarity is deduced by the identical geometrical

arrangement of the various portions of the phase plane as the magnification proceeds. Also, figures
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whichareside-by-sidearereflectionsof eachotherabouttheverticalaxis(this is to beexpectedby

analogywith mapsof quadraticnonlinearity).Next,considerthedistancebetweentheleftmostand

rightmostelementsof Figures2(b)-2(j). If the ratio of successivedistancesis calculatedas the

magnificationproceeds,thenumberfoundis 2.503to within theaccuracyof ourmeasurements.This

is theuniversalscalingfactor_ describedin theIntroduction(equation(3)), andsowe haveanother

instanceof a completeconfirmationof Feigenbaum'suniversaltheoryfor the Kuramoto-Sivashinsky

equation.
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Overviewof themost attracting manifolds

Window range Description of the attractors

1 _ v <

.25 _ v < 1

.0756 < v < .25

.06697 g v g .0755

.05992 _ v N .06695

.05516 _ v g .05991

.0396227 _ v g .05515

.03729 g v _ .0396226

.0346259 _ v N .03728

.029969103484 _ v g .0346258

.02922 g v _ .02969910348

.02905 g v _ .02921

.02855 g v g .02904

.02662 _ v g .02854

.02525 g v g .02661

.02506 _ v g .02524

.0248607 _ v _ .02505

.02445 _ v N .0248606

.0242861 g v g .02445

.02367 $ v _ .02438608

.0232 g v _ .02386

.0229 _ v g .0231

.0223 _ v g .0228

.022 g v g .0222

? g v g .0219

Constant states.

Fully modal steady attractors.

Fully modal and dimodal steady attractors.

Fully modal steady attractors.

Trimodal steady attractors.

Periodic attractors.

Fully modal steady attractors.

Periodic attractors.

Tetramodal steady attractors.

Periodic attractors. Complete period-

doubling sequence.

Chaotic oscillations.

Periodic attractors.

Chaotic oscillations.

Periodic attractors.

Chaotic oscillations.

Periodic attractors.

Chaotic oscillations.

Periodic attractors. Complete period-

doubling sequence.

Chaotic oscillations.

Periodic attractors.

doubling sequence.

Chaotic oscillations.

Periodic attractors.

Chaotic oscillations.

Periodic attractors.

Chaotic oscillations.

Complete period-

TABLE 1
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20-mode Galerkin Expansion

Subwindow boundary

.0346258

.03031749

.030049233

.029986446

.0299728366

.0299699036

.02996927484

.02996914018

.02996911134

.02996910516

Length

4.3083x10 -3

2.6825x10 --4

6.2786x10 -5

1.3609x10 -5

2.9330x10 -6

6.288x10 -v

1.3456x10 -7

2.884x10 -8

6.18x10 -9

1.32x10 -9

Ratio

16.061

4.2724

4.6136

4.6399

4.6644

4.6657

4.667

4.68

.029969103842

.029969103558

.029969103498

.029969103484

2.84x10 -10

6.0x10 -11

1.4x10 -11

4.65

4.7

4.

Period

.44

.88

1.76

3.52

7.03

14.05

28.1

56.2

112.4

224.8

449.6

899.1

1798.2

TABLE 2

7
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